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Abstract. Mesoscale fractures, with lengths between meters and tens of meters, cannot be effectively characterized in the 

subsurface, due to limitations of borehole and geophysical datasets. On the other hand, large quantitative structural datasets 

can be collected on outcrops by combining direct observations and remote sensing (digital outcrop models - DOMs). These 

data can be used to constrain models of subsurface fracture networks with the outcrop analogue approach. 

In this contribution we present a complete and rigorous workflow that leverages digital outcrop models with at least two 15 

perpendicular faces, in combination with various kinds of DOMs, to collect large multi-parameter datasets optimized to 

include all relevant statistical distributions. 

Orientation data are collected with a semi-automatic procedure applied to point cloud DOM of the vertical side of the 

outcrop, resulting in 2D polygonal facets. Fracture sets are defined with a clustering procedure and different orientation 

distributions are fitted and if possible, tested with proper goodness-of-fit tests. 20 

Fracture traces are digitized on textured surface or orthophoto DOMs. Topological parameters are calculated on the digitized 

fracture network on horizontal and vertical orthomosaics, also considering relationships with bedding. Trace length and 

height distributions are characterized with a robust innovative approach, accounting for the censoring bias with 

survival/reliability analysis. 𝑃21 (ratio between total fracture length and sampling area) is measured from traces digitized on 

the large horizontal outcrop, also allowing for the Representative Elementary Area (REA) to be assessed. Even if the 25 

height/length ratio cannot be measured on an outcrop by any means, we apply a realistic assumption and a regression test 

that avoids making completely theoretical assumptions not supported by data. We discuss the applicability of our workflow 

on a large top-quality fractured limestone outcrop in the Murge Plateau near Altamura (Puglia, Italy). 
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1 Introduction 

Fracture networks are complex geological objects composed by all the fractures in a rock mass, were “fracture” is used here 30 

as a collective term for all the different types of discontinuities that affect rocks, including both primary features (e.g. 

bedding and foliation) and secondary discontinuities such as faults, shear fractures, joints, veins, stylolites and other 

dissolution features, deformation and compaction bands, dikes, etc. (Schultz, 2019). Fractures can be classified in sets, i.e. 

populations of cogenetic discontinuities related to the same deformation phases, kinematics (e.g. joint, normal fault), filling 

(e.g. quartz vein) and orientation, within statistical variability (Twiss and Moores, 2006; Davis et al., 2012). 35 

Fractures exert a fundamental control on the mechanical and hydraulic properties of rock masses, and their relevance extends 

to multiple applications, including reservoirs of every kind of geofluid (e.g. Immenhauser et al., 2004; Pringle et al., 2006; 

Hodgetts, 2013; Wang et al., 2023), nuclear waste repositories (e.g. Follin et al., 2014; Hadgu et al., 2017), geothermal 

energy (e.g. Kosović et al., 2024), geo-hazard (e.g. Eberhardt et al., 2004; Agliardi et al., 2013; Riva et al., 2018), 

engineering geology (e.g. Franzosi et al., 2023a, b), seismic swarms migration (e.g. Cox, 2016), hydrothermal mineralization 40 

(e.g. Micklethwaite, 2009; Townend et al., 2017), and induced seismicity due to underground fluid injection (e.g. Karvounis 

and Wiemer, 2022). In recent years, the interest in fractured reservoirs has increased due to the growing number of projects 

related to decarbonization and the energy transition, such as CUS (Carbon Underground Sequestration; e.g. March et al., 

2017, 2018), underground hydrogen storage (e.g. Wallace et al., 2021; Zamehrian and Sedaee, 2022), fractured aquifers and 

medium/high enthalpy geothermal fields (e.g. Genter et al., 2010), and underground energy storage (e.g. Menéndez et al., 45 

2019). In all these applications, fracture patterns hold great importance as they influence the direction, magnitude, and 

heterogeneity of fluid flow, and the storage volume of reservoirs. 

 

Parameter Fracture network Fracture set Static/Dynamic 

Number of sets ⁎  Static 

Orientation   ⁎ Static 

Topology ⁎  Static 

Size (length/height)  ⁎ Static 

H/L ratio  ⁎ Static 

Density/Intensity (1) ⁎ ⁎ Static 

Aperture  ⁎ Dynamic 

Spatial organization  ⁎ ⁎ Static 

Representative Elementary Volume (2) ⁎ ⁎ Static 

 

Table 1 Summary of the fracture properties needed to quantitatively characterize a fracture network. (1) The 𝑷𝒙𝒙  system 50 

introduced by Dershowitz and Herda (1992) is generally used for density and intensity. (2) The representative 
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elementary volume (REV) can be different for each property and the overall REV of the fracture network can be seen as a 

combination of REVs for individual properties (e.g. Martinelli et al., 2020). 

 

The quantitative characterization of fracture networks requires the determination of several geometrical and topological 55 

attributes of fractures and their statistical distributions (Table 1). Some of these attributes apply to the individual fracture set 

(e.g., orientation, length/height distribution) others to the whole fracture network (e.g., topology). Fracture properties can be 

static, meaning that they do not change in response to boundary stress field and fluid pressure variations (e.g., number and 

orientation of fracture sets), or dynamic, meaning that they can change due to variations of mechanical conditions, as for 

instance does fracture aperture when fluid pressure changes in response to injection of fluids in a reservoir or in the seismic 60 

cycle (Gleeson and Ingebritsen, 2012). 

Several factors negatively impact our ability to quantify these parameters, both in the subsurface and in outcrops (e.g. Healy 

et al., 2017; Laubach et al., 2019; Martinelli et al., 2020):  

1) Fractures in the subsurface (e.g. in reservoirs) cannot be characterized at the mesoscale (meters to tens of meters) using 

direct techniques. Borehole data (cores and image logs) only provide 1D, very local and sparse information (limited to 65 

1D traces in a 3D volume), do not constrain the size of discontinuities, and are affected by important orientation biases 

(Baecher, 1983). 

2) Geophysical methods can provide continuous 3D information, but with important limitations since (i) not always 

fractures are associated to a contrast in physical properties that can be imaged with geophysical techniques, and (ii) in 

any case the spatial resolution of these datasets is limited. For instance, in good quality industrial 3D seismics, fractures 70 

smaller than about 200-300m cannot be detected, and, in order to be directly observed, these fractures should be 

characterized by a displacement that results in a contrast of seismic impedance across the discontinuity. Summing up, 

only macro-scale faults can be reasonably imaged in seismics, and this induces a biased estimate of volumetric fracture 

metrics (e.g. Laubach et al., 2019).  

3) At the outcrop scale four major biases must be taken into account (Baecher and Lanney, 1978): orientation bias, 75 

truncation bias, censoring bias and size bias. The orientation bias stems from the nature of the intersections between the 

fracture plane and the outcrop surface and to the choice of the sampling dimensionality (e.g., lines, areas or volumes). It 

influences the representativity of field measurements, and results in downsampling of certain fracture sets with respect 

to others. The truncation bias imposes a lower boundary to the measured fracture trace length, and it is defined by the 

smallest feature that is possible to detect. The censoring bias is due to the finite nature of outcrops since the full length 80 

of the longest fractures is limited by the outcrop size, and in any case the length of fractures ending outside of the 

outcrop is not known exactly. The size bias states that larger fractures (i.e. fracture surfaces with a larger area) have a 

greater probability to intersect the outcrop surface and to be sampled. To these major biases it is important to add that 

the morphological and weathering conditions of the outcrop strongly influence the calculation of parameters like 

topology, density and intensity. 85 
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4) A complete 3D description of the fracturing state is only possible in the lab at the centimetric to decametric scale, using 

non-destructive imaging techniques such as X-Ray Computer Tomography (Agliardi et al., 2014, 2017), which allow 

measuring volumetric parameters such as 𝑃33 (fracture porosity, i.e. fracture volume per unit volume), 𝑃32 (volumetric 

fracture intensity, i.e. fracture area per unit volume) and 𝑃30 (volumetric fracture density, i.e. fracture number per unit 

volume; Dershowitz and Herda, 1992). 90 

The impossibility to directly map or image fractures in the subsurface suggested using continuum representations based on 

some form of upscaling or homogenization, such as the dual porosity model (Warren and Root, 1963). Alternatively, the 

Discrete Fracture Network (DFN) approach allows generating stochastic simulations where fractures are simplified as planar 

polygons in 3D or segments in 2D. Generating DFNs requires fracture parameters and a stopping criterion to end the 

simulation. Standard DFN software (e.g. Move – https://www.petex.com/pe-geology/move-suite/, Petrel – 95 

https://www.slb.com/products-and-services/delivering-digital-at-scale/software/petrel-subsurface-software/petrel, FracMan – 

https://www.wsp.com/en-gl/services/fracman, DFNworks – https://dfnworks.lanl.gov/) are based on a Poisson point process 

that generates fractures with a random spatial distribution. The geometrical properties of each fracture are drawn from 

parametric length and orientation distributions, and fracture height is generally controlled by a fixed height/length ratio. The 

simulator generates fractures until a target fracture intensity 𝑃32 (Dershowitz and Herda, 1992) is reached in the simulation 100 

volume. Connectivity or any other form of spatial organization cannot be taken into account in these models due to 

limitations of the Poisson distribution, that is specifically based on the assumption of spatial independence between fractures 

(e.g. Davis, 2002). Modern approaches have been developed in the last years to try and solve this fundamental limitation, for 

instance controlling clustering of fractures by means of the Ripley’s K function (Shakiba et al., 2024), or including attractive 

vs. repulsive spatial and directional processes controlled by  statistical and/or pseudo-mechanical parametrizations (Bonneau 105 

et al., 2013; Davy et al., 2013; Bonneau et al., 2016), but a satisfactory solution has yet to be found, especially in 3D. 

Sometimes also “deterministic” DFNs are used, but the possibility of creating such models is limited to structures that can be 

imaged in 3D seismics, i.e. meso-scale faults larger than some hundred meters and characterized by an offset that results in a 

contrast in seismic impedance. 

Due to the beforementioned limitations in subsurface datasets, input properties for generating stochastic DFNs are often 110 

obtained from representative analogues exposed in outcrops that can be studied in detail, compensating for the information 

gap at the reservoir scale. The outcrop analogue approach assumes that the detailed information gathered at selected, high-

quality rock outcrops can be considered representative of the fracture network properties of deep rock masses that underwent 

the same geological history (Bertrand et al., 2015; Bistacchi et al., 2015; Jacquemyn et al., 2015; Martinelli et al., 2020). 

This approach relies on the availability of robust datasets to characterize statistical distributions of the fracture network. In 115 

this regard, the traditional direct geological and structural field survey is as unavoidable as it is limiting, in the sense that 

parameters such as kinematics, roughness, relative chronology and mineralization/filling of structures can only be gathered 

during fieldwork (e.g. Hancock, 1985), but on the other hand limited accessibility and logistical limitations prevent the 

collection of extensive geometrical datasets with traditional techniques (e.g. McCaffrey et al., 2005). To solve this problem, 
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Digital Outcrop Models (DOMs) - high-resolution 3D photorealistic representations of natural outcrops (Bellian et al., 2005; 120 

Bistacchi et al., 2022b) have been successfully employed to collect large quantitative structural datasets, overcoming the 

limitations of classical survey techniques (Sturzenegger and Stead, 2009; Gigli and Casagli, 2011; Sturzenegger et al., 2011; 

Riquelme et al., 2014, 2015; Bistacchi et al., 2020; Martinelli et al., 2020; Bistacchi et al., 2022a; Storti et al., 2022). 

Depending on the outcrop morphological expression, data can be collected from DOMs using either facets - 2D planes 

interpolated on the DOM, or traces - polylines that are usually digitized in a GIS environment, but sometimes also on a 3D 125 

DOM (Bistacchi et al., 2022b). These two types of data carry different but complementary information; however, the 

methodologies developed in previous contributions by different authors are often based on only one of these kind of data, 

limiting the number of parameters that can be obtained (Ortega et al., 2006; Boro et al., 2014; Martinelli et al., 2020; 

Smeraglia et al., 2021).  

In this paper we present a workflow that combines new and existing methodologies to quantitatively characterize all the 130 

parameters of a fracture network, with a particular focus on obtaining robust statistical distributions to be used as input in 

stochastic DFN models. The analysis is based on both traditional direct field observations and photogrammetric DOM 

analysis. The integrated workflow is aimed at maximizing the structural information that can be obtained from different 

types of DOMs, including orientation distributions, topological relationships, length and height distributions and fracture 

intensity. Some of these parameters (i.e. topology) are not direct inputs to DFN models, yet they represent a fundamental 135 

control on the quality of the generated model itself.  

The workflow, rooted in a rigorous statistical background, attempts at minimizing the assumptions made at every step, for 

example during the choice of the orientation distribution, or the length and height distribution. The methodologies proposed 

to estimate each parameter can be applied independently, subject to the type and quality of the outcrop. The complete 

workflow (Figure 1), combining both facet and trace data, includes two separate processing pipelines: (i) semi-automated 140 

fracture orientation analysis carried out on point cloud DOMs (Sect.4.4); and (ii) fracture trace analysis carried out on 

orthomosaics, allowing to measure topological relationships, length and/or height distributions, 𝑃21, and to estimate (subject 

to assumptions) the H/L ratio distribution (Sect. 5 to 8). The two pipelines are integrated to achieve a complete 3D 

parametrization of the fracture network (Sect. 9 and following).  

We tested our workflow at an abandoned quarry of the Altamura Limestone Fm. (Puglia, Italy), where both a horizontal 145 

pavement and vertical walls provide the opportunity to fully characterize the fracture network in 3D. 
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Figure 1 Flow chart of the presented workflow. Numbered boxes define the sections of this contribution in which the respective 

steps of the workflow are addressed. 150 

2 Selecting an outcrop: the Altamura Limestone at Pontrelli quarry 

Outcrops for quantitative fracture survey needs to be carefully selected, in order to satisfy some requirements: a) 

representativity of the structural and lithological properties of the larger rock volume of interest (e.g. some formation, a fold 

limb, etc.); b) size large enough to account for the scale of structures to be investigated; c) continuous unimpeded exposure; 

d) optimal orientation with respect to the main fracture sets, to minimize orientation biases (Terzaghi, 1965; Zhang et al., 155 

2002). In this context, it is important to select outcrops that present at least two exposed perpendicular sides (e.g., a vertical 

cliff and an exposed pavements), natural or artificial (e.g., quarry site), for a full 3D characterization of the fracture network 

metrics. 

Here we consider fractured limestone outcrops in the Murge Plateau near Altamura (Puglia, Italy), in the forebulge of the 

outer Apulian platform, in front of the southern part of the Southern Apennines fold and thrust belt (Panza et al., 2019). The 160 

abandoned Pontrelli quarry provides 18.000 m2 of horizontal pavement and vertical walls with a cumulative width of up to 

500m and up to 6m in height, where fractures are beautifully exposed thanks to the careful maintenance of the site (Figure 

2A, B, C) that is carried out because of thousands of dinosaur footprints that were discovered by Nicosia et al. (1999). The 
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outcrop, well known and described in scientific literature (Panza et al., 2015, 2016, 2019) has been recognized as a suitable 

analogue for reservoirs in related areas (Zambrano et al., 2016). 165 

The quarry is carved into the shallow marine intertidal limestones of the Calcare di Altamura Formation. Limestones are 

well-stratified light-brown mudstones, with wackestone-packstone layers at the bottom of the beds and sometimes algal 

laminites in the upper parts. Strata are 20 – 60 cm thick and are organized in thickening upward cycles, some meters thick, 

bounded at the top by major surfaces of subaerial exposure. Bed interfaces often consist of stylolites having teeth both 

perpendicular to the folded bedding and tangential (slickolites). The outcrop shows 3 different fracture sets and a set of 170 

“major” structures, that are actually major at the outcrop scale, but negligeable at the regional scale (Figure 2B). Set 1 is the 

most persistent, it is NW-SE striking and, based on abutting relationships, predates all the other sets (Table 2). It presents 

both joints and meso-faults with a vertical displacement up to a few cm. Set 2 is also striking NW-SE on average, but with a 

wider scatter, and it also includes both joints and strike-slip meso-faults. However, structures belonging to Set 2 always abut 

on those belonging to Set 1, showing that Set 2 is distinctly younger (Table 2). Set 3 is NE-SW striking and includes 175 

fractures that abut on those belonging to both Set 1 and 2. The trace of these fractures, that are limited by older structures, 

are relatively short, but are responsible of most of the connectivity of the network (Table 2). 

Even though this outcrop is top-quality in terms of fracture parameterization, due to the areal extension, cleanliness of the 

pavement, and the association between horizontal and vertical outcrops, some problems must be still evaluated. 

The pavement (Figure 1A, B) presents some no data zones – where no data can be collected at all, due to debris patches or 180 

the presence of strong concentrations of non-natural features produced by quarrying activities. Other zones distributed across 

the pavement are partially affected by non-natural, quarrying-related fractures, but with a careful analysis it is still possible 

to detect Set 1, while Set 2 and especially Set 3, being characterized by smaller fractures, are drowned by artificial fractures.  

Regarding the quarry walls, here we present data on the NW part (Figure 2C), that is less disturbed by quarrying activities 

and favourably oriented with respect to Set 1 and 2, while Set 3 is sub-parallel to the wall. The wall is around 6m tall, and 185 

according to the stratigraphic analysis proposed by Panza et al., (2016), includes a bed package developed above the quarry 

pavement, which is one major subaerial exposure surface, while other prominent subaerial exposure surfaces are not detected 

inside the wall. 
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Figure 2 (A) Aerial view of the Pontrelli quarry, Altamura, Italy. In pink the quarry pavement is highlighted, while the analysed 

quarry wall is highlighted in green. (B) Orthomosaic of the quarry pavement, with digitized fractures and interpretation 

boundary. (C) Orthomosaic of the interpreted vertical wall, with digitized fractures and interpretation boundary. (D) Field data 

collected along the quarry walls. (E) Rose diagram of orientation data collected from fracture traces on the orthophoto of the 

pavement (B). (F) Rose diagram of orientation data collected from fracture facets on the digital outcrop shown in (C). 195 

 

Fracture set Structures & kinematics Average strike Relative chronology 

Set 1 Joints and meso-faults NW-SE Abutted by Set 2 & 3 

Set 2 Joints and meso-faults NW-SE 
Joints abut on Set 1 & abutted by Set 3. 

Faults crosscut Set 1 & abutted by Set 3. 

Set 3 Joints SW-NE Abut on Set 1 and 2 

 

Table 2 Summary of fracture sets characteristics at the Pontrelli quarry. 

 

3 Digital Outcrop Model reconstruction and pre-processing 200 

Once the best exposures have been selected, we must also take care of collecting the best input data in order to create a high-

quality DOM, that will greatly facilitate the workflow downstream. This topic was covered in details by Bistacchi et al. 

(2022b) and here we just summarize the main requirements in the next paragraphs, always considering the Cava Pontrelli 

case study. 

3.1 Photogrammetric acquisition 205 

Horizontal pavement DOMs have been acquired with a DJI Mavic 3E drone flown with an autonomous flight application 

(DJI Fly app). The photos were shot perpendicular to the outcrop, with a 70% overlap, both between photos pertaining to a 

single strip and between adjacent strips. As discussed in Bistacchi et al. (2022b), flights at different altitudes were collected 

to avoid large-scale distortion in the photogrammetric model, and the minimum altitude of 8m allowed collecting images 

with a ground resolution of 4 mm/pixel. Georeferencing of these DOMs is based on GPS data collected by the drone and 210 

recorded in EXIF data of each photo. 

Vertical cliff DOMs have been collected with a Nikon Z7 full-frame mirrorless camera mounted on a tripod with a graduated 

head, adopting a multiple fan scheme (Bistacchi et al., 2022b), in which every shooting station is evenly spaced by 10° of 

interstation vision angle, measured targeting a certain point on the outcrop and moving parallel to the outcrop by a distance 

corresponding to 10°. From each camera locations several photos were shot with a fan pattern, trying to cover the whole 215 

outcrop and using different focal lengths, and some shooting stations were collected from a larger distance. This shooting 

scheme allows (i) avoiding large-scale distortion in the photogrammetric model and (ii) results in an optimal reconstruction 
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of rough outcrop faces, characterized by facets that form a high angle with respect to the main viewpoint. Noteworthy, this 

kind of survey could be also carried out with a drone, flying and shooting manually, replicating the ground-based multiple 

fan scheme, but only high-end cinema-grade drones have cameras that can come close to the quality of a high-end full frame 220 

DLSR or mirrorless camera, with significantly higher costs, hence where possible we prefer to use the ground-based 

technique. 

Georeferencing of the terrestrial surveys was simply performed by marking on the outcrop the location of the mirrorless 

camera shooting stations before carrying out the drone survey. These points were then retrieved from the drone dataset with 

an accuracy of better than 4 mm (allowed by the very high resolution) and used to co-locate the terrestrial dataset in an 225 

accurate and perfectly consistent way. 

3.2 Point cloud DOM and Textured surface DOM 

Regardless of the technique used to acquire the data, DOMs can be rendered, depending on the outcrop morphology and the 

scope of the work, as point cloud DOMs (PC-DOMs) or textured surface DOMs (TS-DOMs) (Bistacchi et al., 2022b). PC-

DOMs, as the name suggests, are dense sets of points, where each point is characterized by XYZ coordinates and an RGB 230 

value, and they are the main output of SFM/MVS photogrammetric reconstructions or laser scanning acquisitions. PC-

DOMs are particularly suitable to carry on structural interpretations, using specific tools (Thiele et al., 2018), on outcrops 

where fractures appear as facets of different size and orientation (as in Figure 3). TS-DOMs are derived from PC-DOMs by 

generating a polygonal mesh from the point cloud and texturing images onto its surface (Tavani et al., 2014; Bistacchi et al., 

2015). In this case the geological and structural interpretation can be carried out in 3D or, as we do in this contribution, with 235 

a standard 2D Geographical Information System (GIS) environment (e.g., QGIS). 

3.3 Quality of the photogrammetric model 

Defining an absolute quality criterion for a point cloud obtained from a photogrammetric survey is not easy, as different 

kinds of applications have different requirements. In our application scenario, absolute precision is of lesser priority with 

respect to the relative accuracy within a local reference frame. This can be evaluated in early stages of the photogrammetric 240 

processing considering the image reprojection error, measured in pixels, as it directly impacts the relative accuracy of the 

photogrammetric model as a fraction of its ground resolution (expressed in mm/pixel). 

A fundamental requirement in a DOM aimed at structural analysis is that it must be completely free from artifacts (doubled 

surfaces, distortion, doming), and that noise (isolated points outside the outcrop surface) should be as low as possible. A 

typical artifact resulting from a low-quality acquisition scheme, that does not include fans or photos collected at variable 245 

altitude as discussed above, is the presence of doubled “surfaces”, consisting in layers of duplicated points that do not define 

univocally the outcrop surface. Bistacchi et al., 2022b suggested that the best solution is to use a high-quality acquisition 

scheme, since a posteriori solutions do not work or are hugely time-consuming. 
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We believe that the most important parameter for applications in structural geology is surface density. By defining a kernel - 

a sphere of radius R moving in such a way as to being cantered on each point - the point surface density 𝑆𝐷 can be calculated 250 

as the ratio between the number 𝑁 of points falling in the kernel and the area 𝜋𝑅2 of the largest circle inscribed in the sphere 

with radius R: 

𝑆𝐷 =  
𝑁

𝜋𝑅2                                                                                                                                                                                   (1) 

 

As an example, in Figure 3, two PC-DOMs of the same vertical outcrop are compared, collected in two different ways to 255 

obtain a different 𝑆𝐷. The PC-DOM in Figure 3D is reconstructed from more than 400 photos collected as discussed above 

(terrestrial survey with fans scheme, with high end Nikon Z7 mirrorless). On the other hand, the PC-DOM in Figure 3C is 

collected with a smaller dataset (150 photos) collected with the lower quality camera of a small commercial drone (DJI Mini 

3 Pro). The mean SD of the PC-DOM shown in Figure 3D is two orders of magnitude higher than the PC-DOM of Figure 3C 

(298826 vs. 5249 points/m-2), resulting in a much sharper point cloud, from which it is possible to extract more easily, much 260 

more structural information. 

In conclusion a good PC-DOM must be free of artifacts, have low noise, and have a very high SD on all surfaces of interest, 

including facets that form a high angle with the outcrop mean plane, which can be properly imaged only if a multiple fans 

scheme is used. 

 265 
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Figure 3 Comparison between two different PC-DOMs of the same vertical outcrop. (A) and (B) frequency distribution of the SD 

measured with a kernel of 0.049m. The parameters are obtained by fitting a Gaussian model. (C) PC-DOM reconstructed from 

photos collected with a high-resolution full-frame mirrorless camera. (D) PC-DOM reconstructed from photos collected with a 

commercial drone and a simplified acquisition scheme. Point size has been magnified five times, for visualization reasons. 270 

 

4 PC-DOM: semi-automated analysis of fracture orientation 

The goals of orientation analysis are to measure the attitude of each fracture facet that can be mapped on the DOM and to 

classify it within a fracture set (i.e. a statistically defined fracture cluster), amongst those identified in the preliminary field 

survey, or emerging from the clustering analysis (Section 4.3), and finally to obtain robust orientation statistics for each 275 

fracture set. 
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Fractures in PC-DOMs are mainly represented by point patches that are the morphological expression, on the outcrop 

surface, of fracture surfaces, exposed due to natural (e.g. erosion or rockfall) or anthropic (e.g. excavation) events. Here we 

propose a semi-automatic workflow to map these patches, based on a first step of manual mapping of a subset of fracture 

planes on the PC-DOM. This allows selecting different sets of structures, characterizing their orientation statistics, and 280 

assigning them to sets defined in the field. Based on dip and dip direction ranges, the PC-DOM is manually segmented into 

as many parts as the number of recognized fracture sets. The automatic step consists in the automatic interpolation of 2D 

planar features from the segmented point cloud, eventually allowing to greatly increase the number of facets included in the 

analysis, with important benefits for the statistical analysis (Figure 5). 

Our workflow can be carried out in CloudCompare (https://www.danielgm.net/cc/), the most used open-source software for 285 

point cloud processing (Dewez et al., 2016; Thiele et al., 2018) or in PZero, a new 3D geomodelling application where we 

are also developing new tools for DOM analysis (github.com/gecos-lab/PZero). 

4.1 Orientation parameters for fracture sets 

Orientation data are usually recorded in geology using polar coordinates, either as dip and dip direction (dip azimuth) or dip 

and strike for planar features, or as plunge and trend for axes. In general, any orientation can be represented as a unit vector  290 

within a three-dimensional spatial framework (e.g. Mardia and Jupp, 2000), and polar coordinates can be converted into 

director cosines in a dextral cartesian reference with: 

 

𝐿 = sin(𝑑𝑖𝑟) cos(𝑑𝑖𝑝)                                                                                                                                                               (2) 

𝑀 = cos(𝑑𝑖𝑟) cos(𝑑𝑖𝑝)                                                                                                                                                             (3) 295 

𝑁 = − sin(𝑑𝑖𝑝)                                                                                                                                                                         (4) 

 

where L is the component in direction East, M is directed towards the North, and N is directed upwards (Borradaile, 2003). 

The unit normal vector (𝑣⃗ = 𝐿, 𝑀, 𝑁) is calculated on every point of the point cloud by fitting a plane to the points that fall 

within a sphere of specified radius, cantered at the point itself. The larger the radius the smoother the normal vectors will 300 

result, with the drawback of longer computational times.   

With a few exceptions (e.g. bedding with polarity, flow directions), the orientation of geological structures and particularly 

of deformational features like fractures shows a symmetry where the sense does not bear any geological meaning. In 

mathematical terms this means that two vectors 𝑣⃗ and −𝑣⃗ are equivalent in this kind of analysis. This means that different 

conventions can be used for the sense of normal vectors, i.e. the geological convention where normal vectors always point 305 

downwards or the photogrammetric convention where they point out of the outcrop. 
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4.2 Manual orientation mapping 

The first step of the workflow is carried out by manually mapping facets, and particularly their attitude, in the PC-DOM with 

the Compass plugin in CloudCompare (Thiele et al., 2018) or with the facet mapping tool in PZero. These tools behave in 

the same way and mimic the process of manually collecting attitude data in the field with a geologist compass-clinometer. 310 

The fundamental goal of this step of the workflow is to sample each set to define its dip and dip direction range, that will be 

used in the manual segmentation step. Therefore, we suggest carrying out the mapping with an initial random sampling and 

then avoiding oversampling the most represented sets (that are generally those favoured by the outcrop orientation bias). 

Dip and dip direction values are obtained by fitting a local plane on points selected with a spherical kernel. The kernel radius 

is defined on-the-fly during mapping by the user, based on the dimension of the fracture plane. A too small kernel will result 315 

in measurements affected by the roughness of the fracture plane, while a too big kernel will include points pertaining to other 

planes, biasing the orientation value. Orientation data collected in this way are plotted in stereoplots and compared with data 

collected in the field (Figure  2D), in order to assess whether all field-defined sets are also represented in the digital dataset. 

4.3 K-medoid clustering 

The precise identification of fracture clusters is fundamental in the following automated segmentation step, where each 320 

fracture set corresponds to a cluster of orientation data that can be uniquely defined with a measure of location – a series of 

measures to locate the fracture cluster in the parameter space (e.g., mean L, M, N), and a measure of concentration or 

dispersion (Borradaile, 2003). Clustering analysis provides a quantitative answer to both the number of clusters the dataset is 

composed of, and the parameters of each cluster, given an assumption on the type of distribution. 

We apply the K-medoid method to a dataset represented by a table, with 𝑛 rows corresponding to individual orientation data 325 

and three columns corresponding to the three director cosines. K-medoids is a partitional method (Kaufman and Rousseeuw, 

1987) aimed at classifying the data into 𝑘𝑚 groups, where 𝑘𝑚 is the number of fracture set defined in the field, eventually 

adjusted by the visual inspection of the plotted data . Each group must contain at least one object, and each object must 

belong to only one group. Partitional methods try to find a suitable partition by separating objects close to each other from 

objects far away from each other, and how the proximity between objects is calculated determines the specificity of the 330 

method. Considering K-medoids in a 3D parameter space (L, M, N), the location parameter is defined by a medoid, i.e. the 

point belonging to the cluster that minimizes the average distance in the 3-dimensional space between all the other data 

belonging to the cluster and the medoid itself (Kaufman and Rousseeuw, 1987, 2005). K-medoids therefore measure distance 

in an isotropic way in the 3-dimensional space of the dataset. When compared to the more popular K-means approach, K-

medoids are more robust and less affected by outliers (Kaufman and Rousseeuw, 1987). 335 

One of the problems that arises with K-medoids and other similar partitional methods lies in the definition of the approach 

itself, as the number 𝑘𝑚 of cluster is imposed by the user, and this can lead to an underestimation or overestimation of the 

real number of clusters (Kaufman and Rousseeuw, 2005). However, in our application this is not a problem, since the 
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number of fracture sets is iteratively defined starting from an initial guess defined in the field and the clustering algorithm is 

applied as a validation of that hypothesis, eventually adjusting the number of sets to account for clusters that only surfaced 340 

during the statistical analysis.  

A second drawback is that in the standard implementation the initial guess for the medoids is chosen randomly, and when 

different fracture sets show a partial superposition, the clustering algorithm could yield inconsistent and unreliable results. 

To address this issue, the initial guess can be defined by the interpreter by manually positioning the initial guess for the 

medoid.  345 

Finally, to avoid the sense ambiguity of orientation unit vectors discussed above, particularly critical for clusters of sub-

horizontal vectors that can be mirrored across the stereoplot equator, we have developed a solution based on mirroring all 

input data. For each input vector 𝑣𝑖⃗⃗⃗ ⃗ we create another vector −𝑣𝑖⃗⃗⃗ ⃗ with parallel direction and opposite sense (i.e. pointing in 

the upper hemisphere (Figure 4). Then we perform the K-medoids clustering on this duplicated dataset, extracting 2𝑘𝑚 

clusters both in the upper and lower hemisphere. Given the symmetry imposed by duplicating the data with mirroring, also 350 

the resulting 2𝑘𝑚 medoids will be symmetrical, with each medoid in the lower hemisphere having a perfectly symmetrical 

pair in the upper hemisphere and vice versa, then to conclude the analysis we extract just the 𝑘𝑚 clusters with the medoid 

pointing downwards, in the lower hemisphere (Figure 4). 

 

 355 
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Figure 4 (A) 3D stereoplot of two hypothetical fracture set collected on the field. Light blue set and magenta set are the same set 

but recognized as two different sets, due to the geological sign convention. (B) Every set is doubled and mirrored with respect to 

the center of the sphere (B). The clustering algorithm is applied on double the number of the set and only the centrotypes that 

follow the geological sign convention are kept (B). 360 

 

4.4 Manual segmentation of PC-DOM and semi-automatic planar feature extraction 

Based on orientation statistics and K-medoids clustering, it is now possible to segment the whole point cloud into subsets 

with normal unit vectors falling within the statistical variability of different fracture sets.  

The subsets are composed of isolated clusters of points, with the same orientation, each representing a portion of a separated 365 

fracture plane. This greatly improves the automatic extraction of 2D polygonal features during the following steps because 

every patch of points is isolated from the others, nullifying the risk of merging adjacent clusters into one bigger 2D polygon 

and avoiding the possibility of generating planes with an averaged orientation between two different point clusters, 

pertaining to two different fracture sets with different orientations. Another advantage of the manual segmentation is that it is 

possible to specifically calibrate the algorithm for each fracture set. 370 

The segmented point cloud subsets are then fed to the CloudCompare FACETS plugin (Dewez et al., 2016), and specifically 

to its fast-marching algorithm (Sethian, 1999), to interpolate a planar polygonal feature per every point patch that matches 

the calibrated algorithm parameters. In this context, manual mapping and orientation analysis act as a calibration step in 

preparation for the final automatic extraction of planar features, that is greatly simplified and results in very clean results 

thanks to the segmentation step, that for instance avoids generating spurious facets. 375 
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Figure 5 Scheme of the semi-automatic workflow presented in Section 4. Point cloud colored based on dip direction with a HSV 380 
colour scale. (A) Manual data collection on PC-DOM. (B) Manually collected orientation data during the preliminary orientation 

analysis. (C) Manual segmentation of the PC-DOM. (D) automatic feature detection with FACETS plugin. (E) Final result of the 

semi-automatic extraction workflow. Each fracture set is individually shown with contour lines. 

 

Fast marching algorithms are a class of methods developed to track propagating interfaces into a bi-dimensional or three-385 

dimensional space (Sethian, 1999). In the FACETS plugin (Dewez et al., 2016), the fast-marching algorithm is employed to 

create polygonal planar surfaces interpolating subsets of the point cloud. The algorithm is based on four parameters that need 

to be calibrated for optimal results. In particular: 

• Octree level defines the level of systematic recursive subdivision of the point cloud three-dimensional space, defined by 

its bounding box, in this case, a cube. Every level involves subdividing the box into 8 sub-cubes, that allow optimizing 390 

the definition of the smallest feature we want to detect (i.e. the scale of analysis), with the computational time increasing 

with the level. No specific strategy exists to calibrate the octree level. As a starting guess we should chose a value that 

results in cubes with a dimension comparable to the smaller fracture facet we want to detect. From this value, it is 
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possible to decrease or increase the octree level by one level, visually checking the results. In our experience, increasing 

too much the octree level does not increase the quality of the analysis but will result in an over-segmentation of the 395 

facets and possibly in a noise increasing. 

• Maximum distance defines a generalization criterion to merge adjacent features. For instance, if maximum distance is set 

at 68%, at least 68% of the points associated to a facet must have a distance to the facet mean plane that is lower than 

the standard deviation of the distances from the mean plane fitted from the points defining the facet. In geological terms, 

this parameter controls the maximum roughness accepted for a plane to be fitted. The maximum distance parameter can 400 

be calculated by manually isolating a certain patch of points, representing a fracture plane. The distance from the mean 

plane of every point can be manually calculated by fitting a mean plane to the point patch. The result is given in the 

form of a scalar field associated to the point cloud. The mean distance is calculated by fitting a Gaussian model to the 

frequency histogram of the previously calculated distances. 

• Minimum points per facet defines the minimum number of points needed to define a facet. The higher the octree level, 405 

the smaller this parameter should be, as the dimension of the smallest feature detected decreases and so the related 

number of points. This parameter can be considered a threshold between what we consider as noise, and what we 

consider as a proper feature. The minimum points per facet parameter must be tuned according to the average surface 

density SD of the PC-DOM. The higher the surface density the higher will be number of points in the smaller element 

produced by the octree subdivision, therefore the higher this parameter can be set. 410 

• Maximum edge length is related to the length of the boundary of the facet. Small values of this parameter impose 

concave and compact boundaries, while larger values allow for elongated and/or convex boundaries. There is no general 

rule for the calculation of this parameter, which must be empirically calibrated on a case-by-case basis. 

Calibrating all these parameters on the whole point cloud is taxing in terms of computational time, therefore we suggest 

selecting at least 30 representative facets (Fisher, 1992), in terms of dimension and roughness, for every fracture set, 415 

calibrating the algorithm parameters on these facets, and then use this calibration to process the whole PC-DOM. When 

working on a single facet, the octree level must be set to 0, as an isolated facet is considered as a point cloud on its own 

(Figure  6). 

The result of the feature extraction algorithm is a set of 2D polygonal facets resulting from the interpolation of point patches 

that met the criteria defined in the calibration, from which orientation parameters will be obtained (Figure 7E). 420 

It is important to remember that facets can be interpolated only on fully exposed planar structures, therefore they represent 

only the part of the fracture plane that shows a morphological expression. Moreover, based on the calibrated parameters 

there is the possibility that the interpolation of an exposed surface will result in a combination of facets, and not a single one. 

All of this to say that data like faces height and surface extension can be useful but should be handled with care if trying to 

obtain volumetric parameters (𝑃30 or 𝑃32) or height distributions. 425 
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Figure 6 Example of the parameter calibration on a single facet. The max distance is calculated as the mean of the frequency 

distribution of the distances from the mean plane. (A) Example of a planar feature extraction when the max edge length parameter 

is too low. (B) When the max edge length is too high the planar feature results in a non-representative polygon. When the 430 
parameters are correctly calibrated the output planar feature precisely follows the point cloud border and no point is excluded 

from the interpolation for a too low max distance value. 

 

4.5 Orientation parameters calculation 

In structural studies of fracture networks, is common practice to assume that each fracture set shows an orientation 435 

distribution described by the unimodal circular symmetric Von Mises-Fisher distribution on a sphere (Fisher, 1953) - a 

specific declination of the more general Von Mises distribution (Mardia and Jupp, 2000) that, following a common practice 

in geological applications, will be called “Fisher distribution” in the following. 

Even if it is sometimes reasonable to assume that fracture sets follow a distribution with circular symmetry, with the 

exception of particular situations like radial dikes and fractures formed in a flat layer before the onset of folding (e.g. Mandl, 440 

2005), a statistical test is needed, particularly if the final goal is to use the results of orientation analysis in downstream 

simulations. 

Fisher and Best (1984) proposed a goodness-of-fit test for the Fisher model, starting from a previous graphical test 

developed by the same authors (Lewis and Fisher, 1982). The poles of the family of 𝑛 planes that need to be tested (𝐼𝑗, 𝐷𝑗) 

with mean dip and direction (𝐼 ,̅ 𝐷̅), are rotated to obtain vectors with new coordinates (𝐼𝑗
′, 𝐷𝑗

′), with mean dip and dip 445 
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direction (0,0). The original vectors are than rotated a second time to obtain a new set of vectors (𝐼𝑗
′′,𝐷𝑗

′′). On these rotated 

values, the following derived datasets are tested: 

 

• 𝑆𝐸 ≡ {𝑐𝑖
′ = 1 −  cos 𝐷𝑗

′ , 1 ≤ 𝑗 ≤ 𝑛}                                                                                                             (5) 

• 𝑆𝑈 ≡ {𝐼𝑗
′, 1 ≤ 𝑗 ≤ 𝑛}                                                                                                                                     (6) 450 

• 𝑆𝑁 ≡ {𝑍𝑖 = 𝐷𝑗
′′√sin 𝐷𝑗

′′ , 1 ≤ 𝑗 ≤ 𝑛}                                                                                                            (7) 

 

𝑆𝐸 is tested with the Kolmogorov-Smirnov test (Stephens, 1974) against an exponential distribution 𝐸(1
𝑘⁄ ) to check the 

underlying colatitude distribution (exponentiality test). The Kuiper test (Stephens, 1974) is applied to test 𝑆𝑈  against a 

uniform distribution 𝑈(0,2𝜋) to check the assumption of rotational symmetry around the mean vector (circularity test). The 455 

goodness-of-fit of 𝑆𝑁  to a normal distribution 𝑁(0, 𝜎2) is tested with the Kolmogorov-Smirnov test (Stephens, 1974) to 

check against the correlation between colatitude and longitude (normality test) (Figure 7). 

Overall, this procedure provides a quantitative way to assess if the dataset can be fit with a Fisher model, allowing the 

calculation of the mean dip and dip direction of the cluster and the concentration parameter 𝑘.      

https://doi.org/10.5194/egusphere-2025-1398
Preprint. Discussion started: 11 April 2025
c© Author(s) 2025. CC BY 4.0 License.



21 

 

 460 

 

Figure 7 Example of the goodness-of-fit test for Set 2 and Set 3a of the Pontrelli quarry. The hypothesis of sphericity of the data is 

rejected based on all the tests. 

 

If the Goodness-of-fit test is rejected, it is possible to fit a more general distribution. The Kent distribution is a natural 465 

extension of the Fisher distribution as it represents the analogue of a general bivariate normal distribution on a sphere (Kent, 

1982). It includes the additional parameter 𝛽 that describe the ovalness of the distribution, allowing to fit more elliptical 

clusters (Kent, 1982). No goodness-of-fit tests exist to check if the data follow the Kent distribution. Noteworthy, the Kent 
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model results in orientation distributions that are similar to those off the Bingham-5-parameter distribution (Kent, 1982), but 

has a different mathematical formula. 470 

5 Enhanced interpretation on orthomosaic and DEM 

Collecting orientation data directly from outcrops that lack a noticeable 3D morphological expression (i.e. the facets 

discussed above) is not possible. At the same time, measuring fracture size and intensity or density (length, height, 𝑃21, etc.) 

from PC-DOMs is not reliable because facets do not correspond to complete fracture surfaces. For these reasons, we digitize 

fracture traces on TS-DOMs, obtained by projecting and merging the images collected during the photogrammetric survey 475 

onto a polygonal mesh or a DEM (in turn interpolated from the PC-DOM). This kind of data is different and complementary 

to what we discussed above, and only combining both kinds of information we can extract the most complete datasets from a 

DOM.  

The dataset deriving from the interpretation of TS-DOMs is composed of an interpretation boundary (closed polygon) and a 

series of fracture traces (polylines) attributed to different fracture sets. The interpretation boundary limits the portion of the 480 

outcrop where fractures can be detected and digitized. It can include holes to isolate parts of the outcrop, covered by debris 

or vegetation, that are large enough to hinder the interpretation. 

In this case study we were able to obtain orthophotos (see Section 3) of both the sub-horizontal pavement and of sub-vertical 

walls (Figure 2), and this allowed carrying out the fracture trace digitalization in a 2D GIS environment.  

The availability of both RGB images and DEM (from which we can derive slope, aspect and hillshade), can allow following, 485 

with a better continuity, structures that may be challenging to detect in RGB only, due to alteration of the pavement surface, 

lack of colour contrast or zones damaged by quarrying activities, where longer fractures can still be digitized but are difficult 

to detect. 

Every fracture set is saved in a dedicated file and every characteristic pertaining to a specific set is recorded into an attribute 

table field. For example, both set 1 and set 2 have both meso-faults and joints, this information is stored in an integer field 490 

coded as 1 for faults and 0 for joints. At the same time, set 3 is characterized by two main average orientations (Set 3a and 

Set 3b), but the fractures can be associated by their average length and abutting relationships with other sets. Fractures of Set 

3a and 3b are than separated in a specific field. 

Precise termination (snapping in GIS jargon) of abutting fracture traces is managed automatically, defining a threshold 

distance quantified in pixels. In the following sections we discuss how we characterize topological relationships, 495 

length/height distribution, H/L ratio and 𝑃21 from digitized fracture traces. 
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6 Fracture network topology 

Due limitations imposed by observing them in outcrops, the topology of fracture networks, which are actually composed of 

fracture surfaces embedded in a 3D rock volume, is most of the times characterized in 2D, from fractures traces limited 

and/or connected by nodes (Dershowitz and Einstein, 1988; Barton et al., 1989; Renshaw, 1996; Manzocchi, 2002; 500 

Sanderson and Nixon, 2015; Sanderson et al., 2019). Even under this limitation, topology is a fundamental component of 

fracture network analysis because it is directly related to connectivity and fluid flow, as demonstrated by Sanderson and 

Nixon (2015).  

Topological relationships are also instrumental in calculating unbiased length and height distributions, because topology 

allows identifying censored fractures by means of B nodes (Benedetti et al., 2025), and this also cascades into the estimation 505 

of the H/L ratio.  

6.1 Standard topological analysis 

From a topological point of view, a fracture network can be seen as a connected set of branches (fracture traces) and nodes 

(terminations and intersections), delimited by an interpretation boundary (e.g. defined by the natural limits of an outcrop). 

According to Benedetti et al. (2025), four main nodes categories can be found in a fracture network (Figure 8): 510 

• I nodes: fracture trace true tip points; 

• Y nodes: abutting relationship; 

• X nodes: crosscutting relationship; 

• V nodes: perfect coincidence of two tip points belonging to two different fractures - these are theoretically 

possible, but extremely unlikely; 515 

• B nodes: boundary nodes, where a fracture trace terminates at the interpretation boundary. 

The nature of I, Y, X and V nodes is related to the processes that generate the fractures in the first place, but an additional 

consideration pertains to B nodes (Nyberg et al., 2018, Benedetti et al., 2025), which result from the interaction between the 

fracture network and external processes. This interaction leads to the formation of false tip lines (false I nodes → B nodes) 

and the censoring of fracture traces. To prevent an underestimation of network connectivity, it is fundamental to exclude B 520 

nodes from the calculation of the relative proportions of I, Y, and X nodes. 

Nodes classification is based on their topological value (Sanderson et al., 2019), representing the number of branches 

connected to each node. Specifically, I nodes have a topological value of 1, V nodes have a value of 2, Y nodes have a value 

of 3, and X nodes have a value of 4. B nodes can be categorized as nodes with a topological value of 3, but one branch 

originates from the fracture trace while the others come from the interpretation boundary. 525 

FracAbility (Benedetti et al., 2025) is an easy-to-use original Python library developed for the quantitative statistical 

processing of fracture networks. Taking as input a set of polylines for each fracture set and a polygon representing the 

interpretation boundary, it is possible to obtain: 
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• IYX ternary diagram: the standard classification when it comes to topology (Figure 8A). In this diagram, 

the normalized distance from each vertex represents the relative frequency of I, Y and X nodes. 530 

• Connectivity Index (CI): the mean number of connections per line, rendered as contour lines on the IYX 

ternary diagram (Manzocchi, 2002). As a reference, CI = 3.57 was defined as the critical CI for a constant 

length uniformly clustered system (Manzocchi, 2002). 

• Backbone: the largest cluster of connected fractures in the network. 

These results represent different aspects of the degree of connectivity of the fracture network. The ternary diagram and the 535 

connectivity index give information about the average connectivity of the network. Only when a fracture abuts on another 

one it is possible to reduce the number of I nodes in the network, thus moving towards the X and Y nodes vertices in the 

diagram means increasing, on average, the possibility to form large connected clusters within the network. However, the 

presence of clusters of connected fractures with a high connectivity index cannot be unravelled by the simple node count. 

Backbone extraction solves this problem, highlighting the more numerous connected cluster, and also represents a graphical 540 

solution to the percolation threshold problem, since if the backbone touches two opposite sides of the interpretation 

boundary, this means that a giant connected component exists, and a thoroughgoing flow can be established (Haridy et al., 

2020). As shown in Figure 9, the backbone is marked by a significant increase in the CI value. 
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 545 

 

Figure 8 Topological relationship of the Pontrelli quarry fracture network. (A) Associated IYX ternary diagram, the red dot 

represents the connectivity index (CI). 
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 550 

 

Figure 9 Backbone of the Pontrelli quarry fracture network. The backbone connects two sides of the pavement, indicating the 

presence of a giant connected component. (A) XYI ternary diagram of the backbone zone, the CI increase form 1.4 for the whole 

network to 3.5 along the backbone zone. 

 555 

6.2 Directional Topology 

Topological parameters presented in the previous section give a general picture of the fracture network as a whole and are 

calculated considering the fracture network as a single entity, not considering the geological classification of fractures in 

different sets (Figure 10A). It is thus impossible to retrieve information about a specific fracture set, for example, how many 

I, Y and X nodes a certain set have, or how a set is related to another one in terms of crosscutting and abutting relationships. 560 

This kind of information can be obtained with what we call “directional topology”, where every node not only includes 

information about its type (I, Y, X and B), but also about its “origin” or “direction”, i.e. from which sets a Y node is 
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generated and if it is the first fracture set that abuts on the second or vice versa. The same line of thought can be applied to X 

and I nodes but to a shallower level, given that in a crosscutting relationship it is not possible to define, just with topological 

information, which fracture is older or younger, and for I nodes it is only possible to identify the origin set. 565 

To address this issue, when splitting fractures into branches to calculate topological values, FracAbility stores into the node 

attributes the set to which every branch belongs and the associated directionality (Figure 10B). 

 

 

 570 

Figure 10 (A) Topological relationship based on the topological value for a fracture network composed of two fracture sets. 

Highlighted in red the necessary branches to define one specific node. (B) Topological relationship calculated taking into account 

the branch origin. X nodes are identified by the presence of two branches for every fracture set, Y nodes are identified by three 

connected branches. Of the three branches if only one pertain to a specific set it means that it is abutting on the other. I nodes are 

classified depending on the origin of the connected branch. 575 

 

The usefulness of directional topology is not only limited to a more advanced description of the topological relationships 

within the fracture network, but can be also employed to define a quantitative parametrization of relative chronology 

between fracture sets, and of the stratabound versus non-stratabound nature of fractures. 

In a hypothetical case where a fracture network is composed of two fracture sets, without censored terminations, and one of 580 

the two sets consistently abuts on the other, the abutting set will only show Y nodes. Thus, dividing the number of nodes by 

the number of fractures will yield exactly 2. In a real scenario, where the fracture network also includes censored fractures 

and B nodes, this result will be less than 2 because some of the Y-nodes are masked by censoring. To shield this relationship 

from censoring, it is necessary not only to subtract the number of censored fracture traces from the total, but also the number 
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of Y-nodes that represent the termination of a censored fracture trace from the total Y-nodes, defining the following 585 

relationship:  

 

𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝐵𝑖𝑛𝑑𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥 =   
𝑛 𝑌 𝑛𝑜𝑑𝑒𝑠−𝑛𝑌 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑

2 (𝑛𝑓𝑟𝑎𝑐.− 𝑛𝑓𝑟𝑎𝑐.  𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑)
∗ 100 = 100%                                                                                  (8) 

 

where 𝑛 𝑌 𝑛𝑜𝑑𝑒𝑠 is the number of Y nodes of the abutting set, 𝑛𝑌 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑  is the number of Y nodes associated to a censored 590 

fracture (i.e. trace with one B node and one Y node), 𝑛 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒𝑠 is the total number of fractures of the abutting set and 

𝑛𝑓𝑟𝑎𝑐.  𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑  is the number of censored fractures of the abutting set. The Fracture Binding Index (FBI) ranges from 0, when 

no fractures from the abutting set abuts on the other set, to 100% when every fracture is abutting on another fracture set. 

100% of abutting nodes is an asymptotic value, very difficult to reach in a natural context, but nonetheless revealing a 

tendency in this direction would be interesting. 595 

FBI can assume a different meaning depending on the context in which it is applied. In general FBI represents a quantitative 

way to assess relative chronology. In fact, considering two fracture sets, the one with the higher FBI is interpreted as being 

younger than the other one since it is consistently abutting. Moreover in vertical outcrops, if we consider the topological 

relationships between one fracture set and the bedding, FBI represents a quantitative parameter for the quantification of the 

tendency of a fracture set to be stratabound.  600 
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Figure 11 (A) Directional topology applied to Set 1 fractures on Pontrelli vertical wall (B) Standard topological classification of 

Pontrelli vertical wall. The complete topological characterization is given by the combination of A and B visualizations. 605 

 

Figure 11 shows the application of directional topology to the Pontrelli vertical wall, considering Set 1 and the bedding (S). 

Applying the directional topology analysis we obtain: 

 

- 𝑛 𝑌 𝑛𝑜𝑑𝑒𝑠 = 100  610 

- 𝑛𝑌 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 = 28  

- 𝑛 𝑓𝑟𝑎𝑐. = 93 

- 𝑛𝑓𝑟𝑎𝑐.  𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 = 40 

 

𝐹𝐵𝐼1−𝐵 =   
100−28

2 (93−40).
∗ 100 = 67%                             615 
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Therefore Set 1 is stratabound at 67%. 

Considering now, for example, the abutting relationships of Set 3 on Set 1 as mapped in the pavement:    

 

- 𝑛 𝑌 𝑛𝑜𝑑𝑒𝑠 (3−1) = 1161 620 

- 𝑛𝑌 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 (3) = 4  

- 𝑛 𝑓𝑟𝑎𝑐.  (3) = 1863 

- 𝑛𝑓𝑟𝑎𝑐.  𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 (3) = 12 

 

𝐹𝐵𝐼3−1 =   
1161−4

2 (1863−12).
∗ 100 = 31.2%    625 

 

On the contrary: 

 

- 𝑛 𝑌 𝑛𝑜𝑑𝑒𝑠 (1−3) = 183 

- 𝑛𝑌 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 (3) = 1  630 

- 𝑛 𝑓𝑟𝑎𝑐.  (3) = 2003 

- 𝑛𝑓𝑟𝑎𝑐.  𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 (3) = 175 

                                                                                

𝐹𝐵𝐼1−3 =   
183−1

2 (2003−175).
∗ 100 = 4.9%  

                                                                                  635 

Therefore Set 3 abuts with a FBI of 31.2% on Set 1, and on the other hand Set 1 abuts with only a marginal FBI of 4.9% on 

Set 3, which is considered just an effect of a few digitization errors or local deformational effects. 

7 Trace length/height distribution 

Defining an unbiased trace length distribution has always been one of the main challenges in rock mass and fracture network 

characterization. When calculating or estimating trace length parameters it is possible to distinguish between distribution-640 

dependent and distribution-free methods (Mauldon, 1998). On one hand, distribution-free methods do not relay on any 

specific assumption about the underlying distribution, but provide an unbiased estimator of only the mean trace length by an 

indirect correlation (i.e. length is not physically measured, Warburton, 1980; Pahl, 1981; Kulatilake and Wu, 1984; 

Mauldon, 1998; Zhang and Einstein, 1998; Mauldon et al., 2001; Rohrbaugh Jr. et al., 2002). Not making assumptions about 

the shape and mathematical form of the distribution could be seen as an advantage, but actually the non-parametrical nature 645 

of these approaches implies that it is not possible to obtain important statistics of the population such as the standard 
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deviation without imposing further assumptions (Pahl 1981). This makes distribution-free methods unsuitable for modern 

modelling applications, such as stochastic generation of fracture network, where a fully specified distribution is required.  On 

the other hand, distribution-dependent methods make assumptions on the shape of the underlying trace length distribution, 

thus constraining their results. Because of this, it is necessary to test how well the chosen distribution fits the data. In the past 650 

this was a strong limitation, due to the biases discussed in Section 1. 

Digital outcrops make it possible to overcome with huge datasets some problems that previous authors could only consider 

theoretically from a mathematical and stereological point of view. With these new techniques it is possible to acquire 

massive datasets on very large sampling windows and successfully tackle the different biases that can be present on an 

outcrop.  655 

The orientation bias can be treated by applying areal sampling on outcrops with perpendicular faces. All the fracture sets 

perpendicular or sub-perpendicular to the horizontal plane are detected on the pavement. If present, fracture sets parallel to 

the horizontal pavement can be measured on the perpendicular vertical wall, eliminating the issue of under-sampling fracture 

sets with unfavourable orientations. 

The size bias applies to 1D sampling methodologies (scanlines) where longer fractures have a higher probability of being 660 

sampled, but this bias does not apply to areal sampling strategies where everything inside the interpretation boundary is 

sampled. Even fractures much longer than the interpretation boundary are sampled and classified as censored fractures (see 

below). 

Working with DOMs, the truncation bias applies to small fractures that can be truncated by limited DOM resolution. In our 

case, the resolution of the TS-DOM is around 4 mm/pixel and the smallest digitized fracture is 57 cm. This means that there 665 

is an order of magnitude between the two and it can be safely assumed that truncation bias is not affecting the dataset.  

Consequently, the only remaining bias to be treated is the censoring bias, which occurs naturally due to the finite nature of 

the outcrop or the presence of vegetation or debris. In statistics, censoring is a condition where the value of a measurement is 

partially known. This occurs when some of the data are subject to limitations or restrictions, preventing us from observing 

the complete information. Censoring can happen for various reasons, and it is a common scenario in statistical analysis 670 

(Kaplan and Meier, 1958; Leung et al., 1997; Lawless, 2011). In our case, the fractures that touch the interpretation 

boundary are objects whose length is partially measured, therefore affected by random censoring (Benedetti et al., 2024). 

We thus apply the theory and approaches described in Benedetti et al., (2024) to obtain an unbiased statistical model from 

censoring of both the length and height distributions. As discussed in Benedetti et al., (2024), this analysis solves the 

problems related to single censoring, double censoring, and those related to “holes” within the interpretation boundary, as 675 

depicted in Figure 12. 
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Figure 12 Different cases of censoring in a natural outcrop. The presence of information gaps affects trace length measurements. 

Double censored fractures are considered a single censored fractures with one of the end nodes coinciding with the interpretation 

boundary. 680 

Survival analysis parameter estimation is based on optimization algorithms, like the Maximum Likelihood Estimation 

(MLE), where censoring is taken into account by calculating the likelihood of a censored measurement by using the survival 

function instead of the probability density function (Benedetti et al., 2024). MLE is a parametric approach that needs a 

testing phase to validate its results. Working with censored data, without a specified distribution, leads to a situation where 

none of the standard non-parametric goodness-of-fit test can be applied (Benedetti et al., 2024).  685 

Using the survival analysis approach different hypothesis (statistical models) can be estimated with the censored data. For 

this case study we propose to fit the following statistical models: Lognormal, General Gamma, Weibull, Exponential, 

Gamma, Logistic and Normal. Several statistical distances are calculated between the available empirical data and the fitted 

model to show which of the proposed models is more representative of the data. We chose to use the same distances as 

(Benedetti et al, 2025) thus using: Kolmogorov-Smirnov distance (𝐷𝐶𝑛) (maximum distance), the Koziol-Green distance 690 
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(Ψ𝑛
2) (sum of squared distances) and the Anderson-Darling distance (𝐴𝐶𝑛

2) (weighted sum of squared distances), with respect 

to a uniform distribution U(0,1) (2) Akaike information criterion (Benedetti et al., 2024). 

7.1 Distance from U(0,1) 

The probability integral transformation theorem (Fisher, 1930) is a fundamental concept in probability and statistics, whose 

primary application is to transform the values of a random variable into a random uniform variable. The perfect model for 695 

fitting a dataset will follow a uniform distribution between 0 and 1, meaning a perfect correspondence between the empirical 

data and the theoretical distribution, and other models that are close to the uniform U(0,1) with a small deviation will be 

suitable to describe the data (Figure 13). Therefore, the purpose of the probability integral transformation is to normalize 

distributions in order to be able to compare deviations on a common ground. 

Table 3 show the rankings based on the different normalized distances for Set 1 fractures. The lognormal distribution and the 700 

general gamma distribution rank respectively first and second in all the 3 rankings. In contrast, the logistic and the normal 

distribution are not suitable for our data. With intermediate rankings, we can appreciate the different meaning of the various 

distances; for example, the Weibull distribution shows a smaller maximum distance (𝐷𝐶𝑛) with respect to the exponential 

and the gamma distribution. 

 705 

Figure 13 PIT visualization for Set 1 fractures. 

Name 𝑫𝑪𝒏 rank 𝜳𝒏
𝟐  rank 𝑨𝑪𝒏

𝟐  rank Mean rank 

Lognormal 1 1 1 1 
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General Gamma 2 2 2 2 

Weibull 3 4 3 3.33 

Exponential 4 3 5 4 

Gamma 5 5 4 4.67 

Logistic 6 6 6 6 

Normal 7 7 7 7 

Table 3 Ranking based on the Kolmogorov-Smirnoff distance, Koziol-Green distance and Anderson-Darling distance for Set 1 

trace length data. 

7.2 Akaike information criterion 

The Akaike information criterion (AIC), is a criterion to rank models from the best to worst based on the empirical data 710 

(Akaike, 1974; Burnham and Anderson, 2004). AIC is designed to identifying the so called MAICE (Minimum information 

theoretic criterion (AIC) Estimate) (Akaike, 1974), as the model that give the minimum of AIC, defined as: 

 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(𝐿𝑚𝑎𝑥)                                                                                                                                                             (9) 

 715 

Where:  

• k: number of model parameters 

• 𝐿𝑚𝑎𝑥: maximized value of the likelihood function 

 

Therefore the Akaike Information Criterion favours parsimony, preferring models with fewer parameters that still adequately 720 

explain the data (Akaike, 1974). 

Associated to AIC, there is another important parameter that gives the probability that a certain model is the best model for a 

given dataset, the Akaike weights (𝑤𝑖) (Burnham and Anderson, 2004). These sum to 1 and have to be interpreted as a 

weight of evidence, meaning that the higher the value, the higher the probability that a certain model, in the pool of the 

selected models, is the best model for our data (Benedetti et al., 2024).  725 

The main advantage of this method is that it takes as input the maximized value of the likelihood function, de facto ranking 

models and their relative parameters taking into account censored data. 

 

Rank Distribution name AIC 𝒘𝒊 

1 Lognormal 7514.617939 0.9912701876 

2 General Gamma 7524.082426 0.0087298124 

3 Gamma 7636.568978 0 

4 Weibull 7653.734152 0 

5 Exponential 7655.821815 0 
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6 Logistic 8804.536054 0 

7 Normal 9246.922169 0 

Table 4 Ranking based on the Akaike information criterion for Set 1 trace length data. 

Just looking at AIC values (Tab.4), and at the various distances measured in the previous section, it seems that even if the 730 

lognormal distribution wins, the three-parameters general gamma distribution is still a valid model for our data. Akaike 

weights clarify this situation showing that the lognormal model is much more powerful at describing our data with respect to 

the gamma model. At the same time, all the other models have Akaike weight equal to 0 meaning that with respect to the 

lognormal and the General gamma models, they are completely unsuitable. 

8 Fracture areal intensity (𝑷𝟐𝟏) 735 

Fracture areal intensity is defined as the ratio between the total sum of fracture trace length and the sampling area 

(Dershowitz and Herda, 1992; Mauldon et al., 2001). This parameter is very important since its volumetric equivalent 𝑃32 

(total fracture area in unit volume) is used as a stopping criterion in stochastic DFN modelling, meaning that the stochastic 

generation of fractures will stop when the target intensity is reached, and 𝑃32 can be obtained form 𝑃21 via a calibration 

procedure (Staub et al., 2002). Given the heterogeneous distribution of fractures in natural outcrops, the characterization of 740 

this value cannot be separated from the concept of Representative Elementary Volume (REV) or Area (REA) (Bear, 1975). 

In outcrop studies REA is the area above which a certain parameter value becomes independent from the position and scan 

area size with which it is calculated and thus the value can be used to constrain wider models. 

To perform this analysis limiting the orientation bias we cover the outcrop surface with hexagonal grids of increasing edge 

length, ranging from 1m to 26m in the Pontrelli quarry case study. Only whole hexagons are considered and data are plotted 745 

using the graphical boxplot method proposed by Tukey, 1977 (Figure  14A). The lower threshold of REA can be defined as 

the minimum hexagon area where no significant difference is detected between the mean and standard deviation of 𝑃21 

obtained at that area and at the next step. 

To quantitatively measure the significance of this difference, statistical techniques like ANOVA, used to compare the mean 

of different populations, can be used in theory (Stahle and Wold, 1989; Moder, 2010). However, ANOVA is based on three 750 

assumptions: (i) hypothesis of normality, (ii) homogeneity of variances, (iii) independence between samples (Moder, 2010). 

In our case, 𝑃21 samples collected with smaller scan areas are clearly asymmetrical (from 1m to 5m), while 𝑃21 samples 

collected with larger scan areas tend to be more symmetrical (Figure 14A). Consequently, variance is inhomogeneous 

through the dataset, leading to an increase of type 1 errors (Moder, 2010). This problem is enhanced by the fact that the 

sample size is unequal and decays as the scan area edge length increases due to the finite size of the outcrop (the larger the 755 

outcrop, the smaller the number of scan areas). For these reasons, ANOVA and similar tests cannot be applied, and we 

decided to adopt a more qualitative approach based on the difference between the interquartile range (deltaIQR) of two 

subsequential 𝑃21 samples. With this approach, REA is reached when deltaIQR stabilizes around 0 (Figure 14B). To account 
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for “far out” data, that are not included in the IQR, we also consider the range between the whiskers calculated as the 

difference between the upper whisker length (Q3 +1.5IQR) and the lower whisker length (Q1 - 1.5IQR) (Figure 14C). 760 

In both cases, REA correspond to a plateau that in our case study between 5m and 12m of scan-area edge length. Above 

12m, the representativity is compromised by the too small sample size (<15 hexagons). 

 𝑃21 REA can be safely calculated only for Set 1 fractures, because, as highlighted in Section 2, in some areas only Set 1 

fractures can be digitized, while Set 2 and Set 3 are drowned by the quarrying related fractures.  

 765 

Figure 14 Representative Elementary Area analysis on Pontrelli quarry Set 1. (A) Boxplot of 𝑷𝟐𝟏 data collected with increasing 

scan area size. Red dashed line: 𝑷𝟐𝟏 calculated on the whole outcrop, with the interpretation boundary as scan area. Green box 

identifies REA range. Small number under the boxplot: sample numerosity. (B) Delta between IQR of two subsequential 𝑷𝟐𝟏 

samples. (C) Range between upper and lower whiskers for each 𝑷𝟐𝟏 sample. 

9 Height/Length ratio 770 

The H/L ratio between height of fractures, measured along the dip direction, and their length, measured along strike, is the 

object of an extensive literature and is believed to span from 1:2 (Odling, 1997; Panza et al., 2015; Giuffrida et al., 2020), to 

1:4 (Panza et al., 2015) or even 1:5 (Boro et al., 2014; Smeraglia et al., 2021), depending and different mechanical 

hypotheses, but could be probably even more variable when crosscutting/abutting relationships between fracture sets and 

with bedding are considered. 775 

H/L ratio is applied, in association with the length distribution, in most commercial and open-source 3D stochastic DFNs to 

model the geometry of the discontinuities, often represented as rectangular or elliptical surfaces. Therefore, the H/L ratio is 

directly correlated to the shape of the fracture planes generated by the DFN and it is responsible for the jump in 
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dimensionality between 2D and 3D models. Unfortunately, the H/L ratio cannot be directly measured in outcrops due to the 

impossibility to map the full extension of fracture surfaces (but only their traces or partial facets). 780 

In the studied outcrop, the availability of both height and length data allows us to make at least some realistic and transparent 

assumption on the H/L ratio based on a correlation of length and height distributions.  

Our assumption is that traces mapped on the pavement (i.e. lengths) and on the wall (i.e. heights) can be associated in 

ordered pairs from the shortest to the longest. Making some assumption of this kind is unavoidable since there is no way to 

directly observe the correspondence between horizontal and vertical traces. We want to stress that this criterion is not unique, 785 

and other relationships can be established between length and height data (e.g., random association), but this criterion seems 

reasonable from a fracture mechanics point of view. 

To test our hypothesis, a hundred values of length and height are randomly sampled from the statistical distributions of 

length and height, ordered from smallest to largest and associated in pairs, and the H/L ratio is eventually obtained with 

linear regression (Figure 16A). 790 

In our case study the height of Set 1 fractures should be limited by the height of the bed package, but the random sampling of 

the height distribution, that is a lognormal distribution, also generates, although with decreasing probability, fractures that 

are much higher. This is why in Figure 15 we limited the linear regression to height values smaller than 6m (height of bed 

package, Panza et al., 2016). One thousand realizations are made to account for the variability of the random sampling and 

the arithmetic mean of the regression line is taken as the representative H/L ratio (Figure 15B).   795 

 

 

Figure 15 H/L ratio calculated for Set 1 fractures. (A) Example of one realization, where hundred values are sampled from the 

height and length distributions. r: Pearson correlation coefficient. (B) Frequency histogram of H/L ratios calculated from 

thousand realizations.   800 
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10 Summary of the results:  fracture network characteristics at the Pontrelli quarry 

In this section we describe the fracture network of the Pontrelli quarry and the results and limitations of the parametrization 

obtained with our workflow. Field observations show that Set 1 is the most prominent set in the outcrop, its fracture traces 

are homogeneously distributed across the pavement, and it can be detected even in areas damaged by quarrying. From field 

and DOM evidence, all other fracture sets abut or crosscut Set 1, therefore pinpointing this set as the older one. This 805 

conclusion is also supported by the topological, length and height analyses. Set 1 shows a lognormal length distribution with 

the largest average and maximum length, in agreement with a condition in which fractures are free to grow, in absence of a 

mechanical compartmentalization defined by previously developed fracture sets, bedding aside (Ackermann and Schlische, 

1997). Set 1 also shows a negligible percentage of abutting relationships with Set 2 (2.7%) and Set 3 (4.9%). This marginal 

number of unlikely relationships, in a geological context in which Set 2 and Set 3 postdate Set 1, can be explained 810 

considering a limited reactivation of Set 1 fractures in more recent tectonic phases. On the contrary, both Set 2 and Set 3 

exhibit a significant number of abutting relationships against Set 1, respectively 21.41% and 31.2%. 

The favourable orientation of the vertical wall supports the collection of a consistent statistical sample of height 

measurements, allowing for a robust fit of the height distribution. However, the height of the vertical wall is barely sufficient 

to get a complete observation window on a bed package. This limits the representativity of the assumption on the stratabound 815 

nature of Set 1. Our interpretation relies on the results from the directional topology analysis between Set 1 and the bedding. 

Since more than 67% of the observed Set 1 fractures abut on bedding surfaces, we believe that it should be vertically 

confined by the height of the bed package. H/L ratio for set 1 is calculated as discussed above from the trace height and 

length distributions, under the assumption that height and length values are associated in pairs from smallest to largest. This 

assumption is supported by the strong linear correlation between the two sets of values (Figure 15) and the resulting H/L 820 

ratio is 0.345.  

 

Set 1 

 Test result Mean dip dir. Mean dip Fisher K Kent K Kent β n. data 

Orientation rejected 213.94 86.3 36.59 39.59 5.42 1475 

        

 Set 2 Set 3 S (Bedding)     

FBI 2.70% 4.9% 67%     

        

 Dist. Type Mean Standard dev. n. data    

Length distribution Lognormal 4.49 6.03 2014    

Height distribution Lognormal 2.09 1.69 93    
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H/L ratio 0.345       

        

 Value REA      

𝑷𝟐𝟏 0.7 m-1 5-12m      

Table 5 Result summary for Set 1 fractures. 

Set 2 mean length is intermediate between Set 1 and Set 3 and the topological relationships exhibit a higher occurrence of Y 

nodes against Set 1 with respect to Set 3, in good agreement with Set 2 being the second older set. The orientation of the 825 

vertical wall still allows to collect both faces and traces of Set 2 fractures, albeit the trace height dataset is less numerous 

than for Set 1, resulting in a less constrained height distribution. This is also reflected in the H/L ratio calculation, which 

should be applied more cautiously to stochastic modelling. 

Unlike Set 1, Set 2 fracture traces in the northern part of the outcrop are drowned by the damaged zones and the noise 

generated by quarrying activities. There is a reasonable doubt that Set 2 fractures are really not present in that part of the 830 

quarry, but faces and traces data collected on the wall prove otherwise. The incomplete sampling of fracture traces across the 

pavement defines a strong bias that hinders the calculation of the 𝑃21 for Set 2, since without a sufficiently wide sampling 

area the REA calculation is not representative. Therefore, if we would model this fracture set with a stochastic approach, 

some assumption on the REA must be introduced. 

Most of Set 1 and 2 fractures on the vertical wall abut on bedding surfaces. This imply that bedding surfaces, in this context, 835 

actually have a control on the vertical development of the fractures. This is particularly true for the “high order” bedding 

surfaces that limit the bed package, where almost 50% of Set 1 fractures abut.  

Set 2 

 Test result Mean dip dir. Mean dip Fisher K Kent K Kent β n. data 

Orientation rejected 75.37 89.31 26.47 27.91 3.1 1933 

        

 Set 1 Set 3 S (Bedding)     

FBI 21.41% 9.69% 97.91%     

        

 Dist. Type Mean Standard dev. n. data    

Length distribution Lognormal 2.094 2.2 913    

Height distribution Lognormal 1.3 0.78 32    

        

H/L ratio 0.359       

        

 Value REA      

https://doi.org/10.5194/egusphere-2025-1398
Preprint. Discussion started: 11 April 2025
c© Author(s) 2025. CC BY 4.0 License.



40 

 

𝑷𝟐𝟏 \ \      

Table 6 Result summary for Set 2 fractures. 

Set 3 shows the highest number of abutting relationships against the other sets and the smallest average length, in agreement 

with Set 3 being the younger represented on this outcrop. 840 

Given the unfavourable orientation of the vertical wall (sub-parallel to Set 3 average attitude), only orientation data from 

facets can be collected and the height distribution cannot be characterized. This implies that also the H/L ratio cannot be 

obtained. Finally, regarding 𝑃21 and REA, the same limitations as for Set 2 apply. Therefore, in case we would model this 

fracture set with a stochastic approach, many relevant assumptions must be introduced even if in general the quality of the 

outcrop is very high. 845 

 

Set 3 

 Test result Mean dip dir. Mean dip Fisher K Kent K Kent β n. data 

Orientation (Set 3a) rejected 157.46 78.75 132.83 133.52 4.45 1269 

Orientation (Set 3b) rejected 124.08 76.8 91.83 92.63 4.2 2123 

        

 Set 1 Set 3 S (Bedding)     

FBI 31.2% 21.19% \     

        

 Dist. Type Mean Standard dev. n. data    

Length distribution Lognormal 0.74 0.75 1863    

Height distribution \ \ \ \    

        

H/L ratio \       

        

 Value REA      

𝑷𝟐𝟏 \ \      

Table 7 Result summary for Set 3 fractures. 

11 Discussion 

This contribution proposes a workflow with quantitative methodologies to address the parametrization of fracture networks 

aimed, for instance, to the generation of stochastic models that are more realistic under the geological and structural point of 850 

view. Our approach is based on a combination of traditional field surveys and DOM surveys, the latter used to obtain large 

datasets to support statistical analysis, the former to guide the digital mapping, filtering the noise given by external factors 
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(e.g. quarrying operations) and assigning every fracture to a specific set through geological observations (particularly 

kinematics and relative chronology). 

Filtering noise and associating a genetic signature to each fracture set is an obvious concern in a quarry, where some 855 

fractures were generated during quarrying operations, but is of the outmost importance also in an outcrop analogue 

modelling perspective, if for instance we want to filter out fractures generated during exhumation, that might not be present 

in a reservoir still buried at depth. 

The very high quality of our outcrop, with perfectly exposed horizontal and vertical surfaces, was instrumental in testing 

techniques that represent, in our opinion, a step forward in collecting rich quantitative datasets and developing rigorous 860 

statistical treatments for many parameters of a fracture network (Table 1). On the other hand, we must also recall that for 

some parameters there are still limitations in data collection and analysis. Both these points are discussed in the following 

sub-sections. 

11.1 Combined analysis of fracture traces and faces 

The integration of facets and traces (collected both on horizontal and vertical outcrops) allows a complete characterization of 865 

fracture network parameters, unlike other approaches that rely on the analysis of only one of these two datasets (e.g. Ortega 

et al., 2006; Boro et al., 2014; Martinelli et al., 2020; Smeraglia et al., 2021). 

Orientation data have been collected on the vertical wall PC-DOM, where dip and dip direction of true 3D planes can be 

measured by fitting a mean plane to planar patches of the point cloud. 

TS-DOMs allow the digitalization of fracture traces and of the interpretation boundary both on horizontal and vertical 870 

outcrops. The integration between fracture traces and the interpretation boundary is fundamental to avoid underestimating 

the connectivity index by misinterpreting B-nodes as I-nodes, and provides a fundamental input to identify censored 

fractures. 

𝑃21 is calculated on the pavement TS-DOM where the huge areal extension enables to define a sufficient number of scan 

areas to detect the REA lower threshold. 875 

11.2 Orientation analysis 

The methodologies we suggest for orientation analysis are aimed at reducing subjective choices of the interpreter and at the 

same time exploiting semi-automatic data collection to increase the volume of data that support statistical analysis. This was 

achieved by: 

• Introducing cluster analysis, in addition to classical structural observation, to segment fracture sets following a robust 880 

statistical criterion. 

• Calibrating an automatic feature extraction algorithm (FACETS) to maximize the data that can be extracted from PC-

DOMs, avoiding the generations of artifacts (e.g. planes with an intermediate orientation) as sometimes happens in 

workflows tested by previous authors (e.g. Menegoni et al., 2019; Panara et al., 2024). 
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• Testing the fitted orientation distributions with goodness-of-fit tests, instead of assuming circular symmetry and a Fisher 885 

distribution without a proper statistical test as (unfortunately) is a common practice in structural geology (e.g. Bisdom et 

al., 2014; Smeraglia et al., 2021; Menegoni et al., 2024; Panara et al., 2024, just to cite some recent papers). 

Our rigorous analysis revealed that, in our case study, no fracture set follows a Fisher distribution (Tab.5, 6, 7), in contrast to 

the conclusions of previous studies on the same outcrop (Panza et al., 2016; Zambrano et al., 2016). At the same time, Kent 

distribution parameters indicate a very low ovalness for all fracture sets, even if Set 3a and Set 3b seem to be almost 890 

elliptical clusters (Fig 5e). The reason is that sets 2, 3a, and 3b are strongly asymmetrical and set 1 is multimodal, as 

highlighted by contour plots in figure 5. 

In the context of generating analogue fracture sets with stochastic modelling (e.g. in DFN), where only the Fisher 

distribution can be modelled by standard software, these parameters should be handled with care. Using a Fisher distribution 

with a K parameter small enough to fit all the planes in the cluster (i.e. with a large spherical variance) will result in artifacts 895 

along the minimum axis of the elliptical distribution, or in not properly represented tails in case of asymmetrical 

distributions. On the contrary, using a K parameter that is too large (i.e. with a small spherical variance) will result in an 

underrepresentation of the oval tails of the data. All these problems will result in an incorrect modelling of connectivity, that 

is positively correlated to orientation dispersion (e.g. Smith et al., 2013). 

A possible workaround for this problem, using the available software, could be to split the oval clusters and fit multiple 900 

Fisher distributions to model their parts, possibly validating the results generating synthetic clusters and comparing them 

with the natural ones. More in general, more advanced distributions such as the, Kent, Bingham-5-parameters, Bingham-8-

parameters or mixed Bingham can be adopted to fit asymmetrical or multimodal clusters (Kurz et al., 2014; Gilitschenski et 

al., 2016; Yamaji, 2016), and we feel that adopting at least the Kent distribution in stochastic modelling applications would 

be a significant improvement along the path of creating realistic stochastic fracture networks. 905 

11.3 Topology 

In the ongoing discussion on topological analysis in fracture studies, some authors (e.g. Sanderson and Nixon, 2015) 

proposed to consider the connectivity of fracture branches, instead of full fracture traces, due to a supposed uncertainty in 

unravelling crosscutting, abutting, or splay relationships when branches form a small angle. From an almost opposite 

perspective, other authors (Forstner and Laubach, 2022) suggest considering also contingent nodes (C nodes) that would 910 

allow merging individual small branches to form larger traces, based on genetic or hydraulic considerations. In this context, 

we like to recall that (i) linear traces or branches represent the intersection of fracture surfaces with the outcrop surface (e.g. 

Sanderson and Nixon, 2015), and that (ii) most of the time we are actually interested in fracture surfaces rather than in their 

traces. In other words, branch connectivity parameters and length distribution can be useful information to characterize 2D 

connectivity of lines, but we would like to stress that considering branch length data as if they were full trace lengths would 915 

dramatically underestimate the dimensions of the underlying fracture surfaces, overestimate fracture density (since branches 

are more numerous that full traces) and would not allow performing directional topology analysis on a per-set basis, as 
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discussed above. For these reasons we insist in considering fracture traces, relying on geological information collected in the 

field to solve the ambiguity highlighted by Sanderson and Nixon (2015). 

Directional topology adds a further layer to the fracture network characterization by assigning every node to specific fracture 920 

set(s). This allows quantifying crosscutting and abutting relationships between different fracture sets and understanding how 

the different fracture sets contribute to the overall connectivity of the fracture network. At the same time, it is possible to 

derive parameters like FBI that express the relative chronology and stratabound relationships in a more quantitative way. The 

necessity of excluding censored fracture traces from the FBI calculation might result in either an overestimation of this 

index, in case the longest traces tend to have I-nodes, or an underestimation in case they tend to terminate with Y-nodes. 925 

Unfortunately, this effect is very difficult to assess at the moment, and we leave a more detailed analysis for future studies. 

Extracting the backbone of the trace network as in Figure 9, i.e. the largest connected cluster of the network, seems a really 

interesting result, and is possible thanks to the code we developed (https://github.com/gecos-lab/FracAbility). However, we 

would like to raise some cautionary note about these results. In fact in our outcrop the backbone is located along one of the 

major structures present in the pavement but, at the same time, it has been detected in a zone of the pavement that is very 930 

clean and free from quarrying-induced fractures, and it is bound by zones where the possibility to detect smaller fractures 

belonging to Set 2 and 3 is more limited. Therefore, there is no way of knowing if the shape and position of the backbone are 

due only to the presence of a major structure, or if they would change if other areas of the outcrop were not disturbed. In 

conclusion, the backbone detected by our analysis probably represents a subset of what it could be, if a complete undisturbed 

dataset was available. This also means that the connectivity index of the whole fracture network is probably underestimated, 935 

even in such a high-quality outcrop. 

11.4 Length and height distributions 

Of the four major biases that hinder the definition of a correct length and height distribution, censoring is the only one that 

cannot be addressed by changing sampling strategy (as for size and orientation bias) or improving data acquisition 

techniques and checking the quality of the input data by quantifying the resolution of the TS-DOM with respect to the 940 

smallest fracture that can be detected (truncation bias, Section 7). This has led to excluding censored data (Bisdom et al., 

2014) or considering censored fractures as complete ones (Panara et al., 2024; Smeraglia et al., 2021), resulting in statistical 

models that always underestimate length (Benedetti et al., 2024). At the same time, non-parametric approaches do not 

provide a fully specified parametric distribution (Mauldon et al., 2001), that is a fundamental input data in applications such 

as stochastic models, and also to evaluate the meaning of data in general (i.e. knowing the mean without any hint on standard 945 

deviation is meaningless). The censoring correction obtained by (Benedetti et al., 2024) with survival analysis allows to use 

the full extent of the dataset collected from TS-DOM, and obtaining an unbiased statistical distribution. 

In this contribution we leverage the availability of both pavement and vertical wall exposures, obtaining an H/L ratio specific 

for our outcrop. This is a significant improvement with respect to previous approaches, where the H/L ratio is generally 
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assumed based e.g. on theoretical mechanical considerations, without any comparison with empirical data (Odling et al., 950 

1999; Schultz and Fossen, 2002, and references therein). 

The approach we propose, however, is not completely immune from a-priori assumptions. In fact, even in ideal outcrops, it is 

impossible to actually measure H/L of a single fracture surface because either we see the direct connection of the fracture 

surface in the vertical and pavement exposures – but in this case both traces are censored, or we see complete traces – but in 

this case we cannot see the connection. Our assumption is that height and length statistics must be correlated according to 955 

size rank, as discussed above in Section 9, and we believe that this is a reasonable assumption based e.g. on mechanical 

considerations (Odling et al., 1999) and results of our linear regression (Figure 15) but it is nevertheless important to state 

this transparently. 

11.5 Fracture intensity and representative elementary area 

Areal fracture intensity 𝑃21  is quite often calculated using scan areas of arbitrary size, without defining a proper 960 

representative sampling area (e.g. Bisdom et al., 2014; Menegoni et al., 2024; Panara et al., 2024). To our knowledge, only 

Martinelli et al. (2020) presented an analysis allowing to define the minimum REA where fracture intensity can be mediated 

to ensure a proper continuum-equivalent description (Bear, 1975). 

As a partial correction to the approach in Martinelli et al. (2020), we recently noticed that the finite nature of outcrops 

determines limits in the collection of 𝑃21 data, such as the progressive decrease in scan areas numerosity as the scan area is 965 

increased, and the non-independence of 𝑃21 samples collected at increasing scan area sizes. For these reasons a step behind 

has been taken with respect to the application of formal statistical tests in the definition of REA (Martinelli et al., 2020), 

adopting a more qualitative approach which, however, does not require such stringent assumptions as the tests used by 

(Martinelli et al., 2020). 

In any case we believe that, in addition to formal statistical reasons, defining the REA has very important practical 970 

applications. For instance, the choice of the optimal cell size in reservoir-scale models stems from a combination of several 

factors, that are the geological characteristics of the area, lithostratigraphic heterogeneities, mean spacing between wells and 

the available computational power. In general, however, there is a lower limit to the resolution of the model - around 50 m of 

cell size, dictated by computational power. This is an important piece of information because it outlines the minimum size 

that an analogue outcrop should have to capture all the variability within a hypothetical cell. From this point of view, the 975 

Pontrelli quarry provides a pavement two to three times larger than the minimum cell size, granting a sufficient area to 

calculate representative statistics. At the same time, the 𝑃21 REA, determined for Set 1 fractures between 5m and 12m, is 

approximately five to ten times smaller than the minimum cell size, allowing a safe application of continuum-equivalent 

upscaling techniques.  
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12 Conclusions 980 

In this contribution, we presented a series of methods for measuring every relevant parameter to characterize a fracture 

network, particularly under the point of view of stochastic modelling approaches from well-exposed analogue outcrops. Our 

work shows that: 

- Despite the high quality of the outcrop exposure at cava Pontrelli, not all parameters could be measured for 

every fracture set due to variable exposure conditions over the large areas. 985 

- Estimating H/L was not possible without introducing some assumption, even for the best exposed set and in 

presence of both horizontal and vertical exposures. Therefore, we opted to make our assumption as transparent 

and possible, and testing it with regression analysis. 

- All other parameters can be characterized based on robust statistical methodologies, which allow to evaluate 

the uncertainties associated to the measured fracture parameters. 990 

From the case study point of view, the three tectonic related fracture set identified in Pontrelli quarry provide a complete 

view of what may or may not be obtained from an outcrop, depending on the conditions (vegetation, debris, quarrying 

activities) and the geometric relationships between the fractures and the outcrop planes. Parameters that cannot be calculated 

should be estimated (if possible) introducing geologically based assumptions that must be made explicit. To summarize these 

results:  995 

- Set 1 represents the highest standard in terms of geometric properties that can be obtained from an outcrop. 

Fracture traces are homogeneously distributed across the pavement, and the perpendicular relationships 

between the fracture set and the outcrop vertical wall allows the collection of a meaningful statistical sample of 

both traces and facets. 

- Set 2 still provides a complete set of data from the pavement and the wall (even if with a more limited 1000 

statistical sample), but the sampling bias introduced by quarrying activities interfere with the correct estimation 

of the REA and the 𝑃21. 

- Set 3 is affected by the orientation bias on the vertical wall, therefor it is not possible to measure height and 

calculate the H/L ratio. 

- While parameters of Set 1 have been almost completely characterized, we want to highlight that the analysis of 1005 

statistical distributions of Set 2 and 3 is affected by slightly different biases and cannot be fully completed. This 

means that in case we need to model these sets with some stochastic approach, more assumptions must be made 

for the younger sets. 
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13 Code and data availability 1010 

Codes and data are available at the following GitHub repositories owned by the Gecos-lab group of the University of Milano 

– Bicocca (https://github.com/gecos-lab): 

- FracAttitude: Python code for orientation data analysis available at https://github.com/gecos-lab/FracAttitude; 

- DomStudioOrientation: Matlab code for orientation data analysis available at https://github.com/gecos-

lab/DomStudioOrientation; 1015 

- FracAbility: Python toolbox for topology and survival analysis available at https://github.com/gecos-

lab/FracAbility; 

- FracAspect: Python code for H/L ratio calculation available at https://github.com/gecos-lab/FracAspect; 

- FracElementary: Python code for P21 and REA analysis available at https://github.com/gecos-

lab/FracElementary. 1020 
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